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Abstract

In this study, the dual-hyperbolic Fibonacci and dual-hyperbolic
Lucas numbers are introduced. Then, the fundamental identities are
proven for these numbers. Additionally, we give the identities regard-
ing negadual-hyperbolic Fibonacci and negadual-hyperbolic Lucas num-
bers. Finally, Binet formulas, D’Ocagne, Catalan and Cassini identities
are obtained for dual-hyperbolic Fibonacci and dual-hyperbolic Lucas
numbers.

1 Introduction

Since the second half of 20th century, Golden section and Fibonacci numbers
have received considerable attention by the researchers. Golden section firstly
emerged in Euclid’s Elements as an extreme division of line segment and mean
ratio problem. The following algebraic equation was obtained in order to find
the solution of this problem:

x2 − x− 1 = 0.

Thus, the above equation has two roots

x1 = α =
1 +
√

5

2
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and

x2 = − 1

α
=

1−
√

5

2

the positive root x1 = α = 1+
√
5

2 is known as golden number. On the other
hand, the Fibonacci numbers are determined by [12]

Fn = {0, 1, 1, 2, 3, 5, 8, 13, 21, . . .}

which is a numerical sequence, and is given by the following recurrence relation
for n ≥ 1 and the seeds F0 = 0, F1 = 1

Fn+1 = Fn + Fn−1.

Similar to Fibonacci numbers, Lucas numbers are defined by Francois Edouard
Anatole Lucas. Thus the Lucas numbers are determined by [12]

Ln = {2, 1, 3, 4, 7, 11, 18, 29, 47, . . .}

which is a numerical sequence, and is given by the following recurrence relation
for n ≥ 1 and the seeds L0 = 2, L1 = 1

Ln+1 = Ln + Ln−1.

One of the important identities of Fibonacci numbers was Cassini identity
which was obtained as follows by French mathematician Giovanni Domenico
Cassini [4]

F 2
n − Fn−1 Fn+1 = (−1)

n+1
.

This identity connected the three arbitrary adjacent Fibonacci numbers as in
Fn−1, Fn and Fn+1. The Cassini identity(for r = 1 ) is known as the special
case of Catalan identity

F 2
n − Fn+r Fn−r = (−1)

n−r
F 2
r

which was discovered by Eugene Charles Catalan in 1879, [12]. On the other
hand, French mathematician Jacques Philippe Marie Binet derived two re-
markable formulas which connected the Fibonacci and Lucas numbers with
the golden ratio. These formulas were given by

Fn =
αn − (−1)

n
α−n√

5
, Ln = αn + (−1)

n
α−n

and are called Binet formulas, [12].
The complex numbers have the form x+iy, where x and y are real numbers and
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i is the imaginary unit. Taking into consideration this number system, sev-
eral studies have been conducted with respect to complex Fibonacci numbers
and complex Fibonacci quaternions [6, 8, 10]. Moreover, Nurkan and Güven
have obtained some identities and formulas for bicomplex Fibonacci and Lucas
numbers such as Cassini, Catalan identities and Binet formulas [15]. Analo-
gously to the complex number, the hyperbolic number is z = x + jy, where
x, y are two real numbers and j is called the hyperbolic imaginary unit such
that j2 = 1 and j /∈ R. These numbers are also known as split-complex num-
bers, double numbers, perplex numbers, duplex numbers. At the end of the
20th century, Oleg Bodnar, Alexey Stakhov and Ivan Tkachenko revealed a
new class of hyperbolic functions with the help of Golden ratio [1, 16]. Later,
Stakhov and Rozin developed symmetrical hyperbolic Fibonacci and Lucas
functions based on this theory [17]. After these studies Oleg Bodnar found
the golden hyperbolic functions which led to using of these functions at the
geometric theory of phyllotaxis (Bordnar’s geometry). There was an analogy
between the Binet formulas and hyperbolic functions. Thus, this new dis-
covery resulted in a new class of hyperbolic functions which were named as
hyperbolic Fibonacci and Lucas functions. Fibonacci and Lucas number the-
ory has a direct analogy with the hyperbolic Fibonacci and Lucas functions.
For the discrete values of the variable x, Fibonacci and Lucas numbers coincide
with the hyperbolic Fibonacci and Lucas functions. Hence, we have described
dual-complex Fibonacci, dual-complex Lucas numbers and have obtained the
well-known identities for them [7].
We have introduced dual-hyperbolic Fibonacci and dual-hyperbolic Lucas num-
bers. Then we have defined i-modulus of these numbers. While we are de-
scribing these moduli, the properties of the dual unit ε and the hyperbolic
imaginary unit j have been considered. Thus, some identities with respect
to dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers have been
derived. The well-known identities have been used during these operations.
Furthermore, Binet formulas have been obtained for these numbers. Finally,
theorems consisting of negadual-hyperbolic Fibonacci and Lucas numbers and
Catalan, Cassini, D’Ocagne identities for dual-hyperbolic Fibonacci and dual-
hyperbolic Lucas numbers have been stated.

2 Dual-Hyperbolic Fibonacci and Lucas Numbers

We will define the dual-hyperbolic Fibonacci and dual-hyperbolic Lucas num-
bers. Then, some algebraic properties of dual-hyperbolic Fibonacci numbers
will be mentioned. Finally, we will obtain some well-known identities and
formulas involving dual-hyperbolic Fibonacci and Lucas numbers.
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Definition 1. The dual-hyperbolic Fibonacci and dual-hyperbolic Lucas num-
bers are defined by

DHFn = Fn + Fn+1 j + Fn+2 ε+ Fn+3 jε (1)

and
DHLn = Ln + Ln+1 j + Ln+2 ε+ Ln+3 jε (2)

respectively. Here Fn and Ln are the nth Fibonacci and Lucas numbers. ε
denotes the pure dual unit (ε2 = 0, ε 6= 0), j denotes the hyperbolic unit(
j2 = 1

)
and jε denotes the hyperbolic dual unit

(
(jε)2 = 0

)
.

The set of the dual-hyperbolic Fibonacci numbers is represented as

DHF = {DHFn = Fn + Fn+1 j + Fn+2 ε+ Fn+3 jε|
Fn is n

th Fibonacci number, j2 = 1, ε2 = 0, (jε)
2

= 0
}

The base elements (1, j, ε, jε) of dual-hyperbolic numbers correspond to the
following commutative multiplications

j2 = 1, ε2 = (jε)
2

= 0, ε (jε) = (jε) ε = 0, j (jε) = (jε) j = ε.

Let DHFn and DHFm be two dual-hyperbolic Fibonacci numbers such as

DHFn = Fn + Fn+1 j + Fn+2 ε+ Fn+3 jε

and
DHFm = Fm + Fm+1 j + Fm+2 ε+ Fm+3 jε.

Then the addition and substraction of the dual-hyperbolic Fibonacci numbers
are defined by

DHFn∓DHFm = (Fn ∓ Fm) + (Fn+1 ∓ Fm+1) j + (Fn+2 ∓ Fm+2) ε+ (Fn+3 ∓ Fm+3) jε.
(3)

Multiplication of the two dual-hyperbolic Fibonacci numbers is given by

DHFn ×DHFm = FnFm + Fn+1Fm+1 + (Fn+1Fm + FnFm+1) j
+ (FnFm+2 + Fn+1Fm+3 + Fn+2Fm + Fn+3Fm+1) ε
+ (Fn+1Fm+2 + FnFm+3 + Fn+3Fm + Fn+2Fm+1) jε.

(4)
When dual-hyperbolic Fibonacci number is considered as
DHFn = (Fn + Fn+1j) + (Fn+2 + Fn+3j) ε, we come across five different con-
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jugations as follow:

DHF
†1
n = (Fn − Fn+1j) + (Fn+2 − Fn+3j) ε, hyperbolic conjugation

DHF
†2
n = (Fn + Fn+1j)− (Fn+2 + Fn+3j) ε, dual conjugation

DHF
†3
n = (Fn − Fn+1j)− (Fn+2 − Fn+3j) ε, coupled conjugation

DHF
†4
n = (Fn − Fn+1j)−

(
1− Fn+2+Fn+3j

Fn+Fn+1j
ε
)
, dual− hyperbolic conjugation

DHF
†5
n = (Fn+2 + Fn+3j)− (Fn − Fn+1j) ε, anti− dual conjugation.

(5)
Now, we will obtain some equalities by using the algebraic properties of dual-
hyperbolic Fibonacci numbers.

Proposition 1. For any dual-hyperbolic Fibonacci number DHFn ∈ DHF ,
we have

1.
DHFn +DHF

†1
n = 2 (Fn + Fn+2ε) ∈ DF

DHFn ×DHF †1n = −Fn+2Fn−1 ∈ DF (Dual Fibonacci Number)

2.
DHFn +DHF

†2
n = 2 (Fn + Fn+1j) ∈ HF

DHFn ×DHF †2n = F2n+1 + 2FnFn+1j ∈ HF (Hyperbolic Fibonacci Number)

3. DHFn + DHF
†3
n = 2 (Fn + Fn+3) jε ∈ DHF

DHFn ×DHF
†3
n = −Fn+2Fn−1 + 4 (−1)n jε ∈ DHF (Dual−Hyperbolic Fibonacci Number)

4. DHFn ×DHF †4n = F 2
n − F 2

n+1 ∈ F (Fibonacci Number)

5. DHFn ×DHF
†5
n = F2n+3 + (FnFn+3 + Fn+1Fn+2)j + (F2n+5 − FnFn+2)ε

+2Fn+3Fn+2jε ∈ DHF (Dual−Hyperbolic Fibonacci Number)

6. DHFn −DHFn+1j +DHFn+2ε−DHFn+3jε = −Fn+1.

Definition 2. Let DHFn be a dual-hyperbolic Fibonacci number. The i-
modulus (i = 1, 2, 3, 4, 5) of DHFn are defined as follows

DHFn = Fn + Fn+1 j + Fn+2 ε+ Fn+3 jε (6)

and
|DHFn|21 = DHFn ×DHF †1n
|DHFn|22 = DHFn ×DHF †2n
|DHFn|23 = DHFn ×DHF †3n
|DHFn|24 = DHFn ×DHF †4n
|DHFn|25 = DHFn ×DHF †5n .

(7)

Thus, the following theorem can be given.

Theorem 1. Let DHFn and DHLn be a dual-hyperbolic Fibonacci number
and a dual-hyperbolic Lucas number, respectively. In this case, for n ≥ 0 we
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can give the following relations:
1. DHFn +DHFn+1 = DHFn+2

2. DHLn +DHLn+1 = DHLn+2

3. DHFn−1 +DHFn+1 = DHLn

4. DHFn+2 −DHFn−2 = DHLn

5. DHF 2
n +DHF 2

n+1 = DHF2n+1 + F2n+3 + F2n+2j
+ (2F2n+5 + F2n+3)ε+ 3F2n+4jε

6. DHF 2
n+1 −DHF 2

n−1 = DHF2n + F2n+2 + F2n+1j + (F2n+2 + 2F2n+4)ε
+ 3F2n+3jε

7. DHFn ×DHFm +DHFn+1 ×DHFm+1 = DHFm+n+1 + Fn+m+3

+Fn+m+2j+(Fn+m+3 + 2Fn+m+5) ε
+ 3Fn+m+4jε.

Proof of identity 1. By the Definition 1 and equation (3), we have

DHFn +DHFn+1 = (Fn + Fn+1j + Fn+2ε+ Fn+3jε)
+ (Fn+1 + Fn+2j + Fn+3ε+ Fn+4jε)

= (Fn + Fn+1) + (Fn+1 + Fn+2) j
+ (Fn+2 + Fn+3) ε+ (Fn+3 + Fn+4) jε

= Fn+2 + Fn+3j + Fn+4ε+ Fn+5jε
= DHFn+2.

.

Every dual-hyperbolic Fibonacci number is obtained by adding the last two
dual-hyperbolic Fibonacci numbers to get the next one as in Fibonacci num-
bers.

Proof of identity 2. In the same manner to dual-hyperbolic Fibonacci
numbers, we acquire

DHLn +DHLn+1 = DHLn+2.

DHLn +DHLn+1 = (Ln + Ln+1j + Ln+2ε+ Ln+3jε)
+ (Ln+1 + Ln+2j + Ln+3ε+ Ln+4jε)

= (Ln + Ln+1) + (Ln+1 + Ln+2) j
+ (Ln+2 + Ln+3) ε+ (Ln+3 + Ln+4) jε

= Ln+2 + Ln+3j + Ln+4ε+ Ln+5jε
= DHLn+2.

Proofs of identities 3. and 4. Using the identities Fn+2 − Fn−2 = Ln, Fn+1 +
Fn−1 = Ln (see [18]) and equation (6) result in

DHFn−1 +DHFn+1 = (Fn−1 + Fnj + Fn+1ε+ Fn+2jε)
+ (Fn+1 + Fn+2j + Fn+3ε+ Fn+4jε)

= (Fn−1 + Fn+1) + (Fn + Fn+2) j
+ (Fn+1 + Fn+3) ε+ (Fn+2 + Fn+4) jε

= Ln + Ln+1j + Ln+2ε+ Ln+3jε
= DHLn

.
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and

DHFn+2 −DHFn−2 = (Fn+2 + Fn+3j + Fn+4ε+ Fn+5jε)
− (Fn−2 + Fn−1j + Fnε+ Fn+1jε)

= (Fn+2 − Fn−2) + (Fn+3 − Fn−1) j
+ (Fn+4 − Fn) ε+ (Fn+5 − Fn+1) jε

= Ln + Ln+1j + Ln+2ε+ Ln+3jε
= DHLn.

Thus, the proofs of identities 3. and 4. are completed.
Proof of identity 5. Equation (4) gives us

DHF 2
n = F 2

n + F 2
n+1 + 2FnFn+1j + 2 (FnFn+2 + Fn+1Fn+3) ε

+2 (FnFn+3 + Fn+1Fn+2) jε

and

DHF 2
n+1 = F 2

n+1 + F 2
n+2 + 2Fn+1Fn+2j + 2 (Fn+1Fn+3 + Fn+2Fn+4) ε

+2 (Fn+1Fn+4 + Fn+2Fn+3) jε.

As a result, using the identities F 2
n+1−F 2

n−1 = F2n and FnFm +Fn+1Fm+1 =
Fn+m+1 (see [18]), the following identity can be found

DHF 2
n+DHF 2

n+1 = DHF2n+1+F2n+3+F2n+2j+(2F2n+5+F2n+3)ε+3F2n+4jε.

Thus, the identity 5. is proved.
Proofs of identities 6. and 7. Considering the equations (3), (4) and

applying the identities F 2
n+1−F 2

n−1 = F2n and FnFm +Fn+1Fm+1 = Fn+m+1

(see [18]), we can conclude

DHF 2
n+1 −DHF 2

n−1 =
[
F 2
n+1 + F 2

n+2 + 2Fn+1Fn+2j + 2 (Fn+1Fn+3 + Fn+2Fn+4) ε
+ 2 (Fn+1Fn+4 + Fn+2Fn+3) jε]

−
[
F 2
n−1 + F 2

n + 2Fn−1Fnj + 2 (Fn−1Fn+1 + FnFn+2) ε
+ 2 (Fn−1Fn+2 + FnFn+1) jε]

= DHF2n + F2n+2 + F2n+1j + (F2n+2 + 2F2n+4)ε+ 3F2n+3jε

and

DHFn ×DHFm +DHFn+1 ×DHFm+1

= FnFm + Fn+1Fm+1 + (Fn+1Fm + FnFm+1) j
+ (FnFm+2 + Fn+1Fm+3 + Fn+2Fm + Fn+3Fm+1) ε
+ (Fn+1Fm+2+FnFm+3+Fn+3Fm+Fn+2Fm+1) jε
+ Fn+1Fm+1 + Fn+2Fm+2 + (Fn+2Fm+1 + Fn+1Fm+2) j
+ (Fn+1Fm+3 + Fn+2Fm+4 + Fn+3Fm+1 + Fn+4Fm+2) ε
+ (Fn+2Fm+3 + Fn+1Fm+4 + Fn+4Fm+1 + Fn+3Fm+2) jε

= DHFm+n+1 + Fn+m+3 + Fn+m+2j + (Fn+m+3 + 2Fn+m+5) ε
+ 3Fn+m+4jε.
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Now, we will give D’Ocagne’s identity which is known as one of the deter-
minantal identities for Fibonacci numbers.

Theorem 2. For n,m ≥ 0, the D’Ocagne identity of the dual-hyperbolic Fi-
bonacci numbers DHFn and DHFm is given by

DHFm ×DHFn+1 −DHFm+1 ×DHFn = (−1)
n
Fm−n(1 + j + 3jε).

Proof. In order to prove the claim, we consider the equation (4). Thus,
the following equations can be written

DHFm ×DHFn+1 = FmFn+1 + Fm+1Fn+2 + (Fm+1Fn+1 + FmFn+2) j
+ (FmFn+3 + Fm+1Fn+4 + Fm+2Fn+1 + Fm+3Fn+2) ε
+ (Fm+1Fn+3 + FmFn+4 + Fm+3Fn+1 + Fm+2Fn+2) jε.

(8)
and

DHFm+1 ×DHFn = Fm+1Fn + Fm+2Fn+1 + (Fm+2Fn + Fm+1Fn+1) j
+ (Fm+1Fn+2 + Fm+2Fn+3 + Fm+3Fn + Fm+4Fn+1) ε
+ (Fm+2Fn+2 + Fm+1Fn+3 + Fm+4Fn + Fm+3Fn+1) jε.

(9)
Substracting the equation (8) from equation (9), it follows that

DHFm ×DHFn+1 −DHFm+1 ×DHFn = (−1)
n
Fm−n(1 + j + 3jε).

Therefore, we find the desired result.
Theorem regarding negadual-hyperbolic Fibonacci and negadual-hyperbolic
Lucas numbers is:

Theorem 3. Let DHF−n and DHL−n be negadual-hyperbolic Fibonacci and
negadual- hyperbolic Lucas numbers. For n ≥ 0, the following identities are
hold.
1. DHF−n = (−1)

n+1
DHFn + (−1)

n
Ln (j + ε+ 2jε)

2. DHL−n = (−1)
n
DHLn + (−1)

n−1
5Fn (j + ε+ 2jε)

Proof. If we use the Definition 1 for F−n and the identities Fn + Fn+2 =
Ln+1, (−1)

n+1
Fn = F−n(see [12, 11, 5]), then a direct calculation will show
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that

DHF−n = F−n + F−n+1 j + F−n+2 ε+ F−n+3 jε

= (−1)
n+1

Fn + (−1)
n
Fn−1 j + (−1)

n+1
Fn−2 ε+ (−1)

n
Fn−3 jε

= (−1)
n+1

Fn + (−1)
n+1

Fn+1 j + (−1)
n+1

Fn+2 ε+ (−1)
n+1

Fn+3 jε

− (−1)
n+1

Fn+1 j − (−1)
n+1

Fn+2 ε− (−1)
n+1

Fn+3 jε

+ (−1)
n
Fn−1 j + (−1)

n+1
Fn−2 ε+ (−1)

n
Fn−3 jε

= (−1)
n+1

DHFn + (−1)
n

[Fn−1 + Fn+1] j + (−1)
n

[Fn+2 − Fn−2] ε
+ (−1)

n
[Fn−3 + Fn+3] jε

= (−1)
n+1

DHFn + (−1)
n
Ln j + (−1)

n
Ln ε+ (−1)

n
2Ln jε

= (−1)
n+1

DHFn + (−1)
n
Ln (j + ε+ 2jε) .

Again considering Definition 1 for L−n and applying the identities L−n =

(−1)
n
Ln, Lm+n + Lm−n =

{
5Fm Fn, n = 2k + 1
Lm Ln, n 6= 2k + 1

(see [11], [12]), we get

DHL−n = L−n + L−n+1 j + L−n+2 ε+ L−n+3jε

= (−1)n Ln + (−1)n−1 Ln−1 j + (−1)n−2 Ln−2 ε+ (−1)n−3 Ln−3 jε
= (−1)n Ln + (−1)n Ln+1 j + (−1)n Ln+2 ε+ (−1)n Ln+3 jε
− (−1)n Ln+1 j − (−1)n Ln+2 ε− (−1)n Ln+3 jε

+ (−1)n−1 Ln−1 j + (−1)n−2 Ln−2 ε+ (−1)n−3 Ln−3 jε

= (−1)n+1 DHLn + (−1)n−1 [Ln−1 + Ln+1] j + (−1)n−2 [Ln+2 − Ln−2] ε

+ (−1)n−1 [Ln−3 + Ln+3] jε

= (−1)n+1 DHLn + 5 (−1)n−1 Fn j + 5 (−1)n−1 Fn ε+ 10 (−1)n Fn jε

= (−1)n DHLn + (−1)n−1 5Fn (j + ε+ 2jε) .

Theorem 4 (Binet’s Identity). Let DHFn and DHLn be a dual-hyperbolic
Fibonacci number and a dual-hyperbolic Lucas number, respectively. For n ≥
1, the Binet’s formulas for these dual-hyperbolic numbers are expressed as
follow:

DHFn =
ᾱ αn − β̄ βn

α− β
and

DHLn = ᾱ αn + β̄ βn

where ᾱ = 1 + αj + α2ε+ α3jε and β̄ = 1 + βj + β2ε+ β3jε.

Proof. By using the Binet’s formulas for the Fibonacci and Lucas numbers,
by a direct calculation one can find that

DHFn = Fn + Fn+1j + Fn+2ε+ Fn+3jε

= αn−βn

α−β + αn+1−βn+1

α−β j + αn+2−βn+2

α−β ε+ αn+3−βn+3

α−β jε

=
αn(1+αj+α2ε+α3jε)−βn(1+βj+β2ε+β3jε)

α−β
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and

DHLn = Ln + Ln+1j + Ln+2ε+ Ln+3jε
= αn + βn +

(
αn+1 + βn+1

)
j +

(
αn+2 + βn+2

)
ε+

(
αn+3 + βn+3

)
jε

= αn
(
1 + αi+ α2ε+ α3jε

)
+ βn

(
1 + βj + β2ε+ β3jε

)
Finally, putting ᾱ for 1 +αj +α2ε+α3jε and β̄ for 1 + βj + β2ε+ β3jε, it is
easily seen that

DHFn =
ᾱ αn − β̄ βn

α− β
and

DHLn = ᾱ αn + β̄ βn

for dual-hyperbolic Fibonacci and Lucas numbers, respectively.

Theorem 5 (Cassini’s Identities). Let DHFn and DHLn be a dual-hyperbolic
Fibonacci number and a dual-hyperbolic Lucas number, respectively. For
n ≥ 1, the following identities are the Cassini’s Identities for DHFn and
DHLn 1. DHFn+1 ×DHFn−1 −DHF 2

n = (−1)
n

(j + 3jε)

2. DHLn+1 ×DHLn−1 −DHL2
n = 5 (−1)

n−1
(j + 3jε).

Proof of identity 1. Applying the equations (3), (4) and arranging the
terms, the expression DHFn+1 ×DHFn−1 −DHF 2

n becomes

DHFn+1 ×DHFn−1 −DHF 2
n = [Fn+1Fn−1 + Fn+2Fn + (Fn+2Fn−1 + Fn+1Fn) j

+
(
F 2
n+1 + F 2

n+2 + Fn+3Fn−1 + Fn+4Fn

)
ε

+ (2Fn+1Fn+2 + Fn−1Fn+4 + FnFn+3) jε]
−
[
F 2
n + F 2

n+1 + 2FnFn+1j + 2(Fn+2Fn + Fn+3Fn+1)ε
+ 2(FnFn+3 + Fn+2Fn+1)jε] .

Using the identities of Fibonacci numbers Fm Fn+1−Fm+1 Fn = (−1)
n
Fm−n,

F 2
n + F 2

n+1 = F 2
2n+1, Fn Fm + Fn+1 Fm+1 = Fm+n+1 and F−n = (−1)

n+1
Fn

(see [12, 19, 11, 18]) lead to

DHFn+1 ×DHFn−1 −DHF 2
n = (−1)n (j + 3jε) .

Proof of identity 2. According to addition and multiplication of two dual-
hyperbolic Lucas numbers, we see that

DHLn+1 ×DHLn−1 −DHL2
n = [Ln+1Ln−1 + Ln+2Ln + (Ln+2Ln−1 + Ln+1Ln) j

+
(
L2

n+1 + L2
n+2 + Ln+3Ln−1 + Ln+4Ln

)
ε

+ (2Ln+1Ln+2 + Ln−1Ln+4 + LnLn+3) jε]
−

[
L2

n + L2
n+1 + 2LnLn+1j + 2(Ln+2Ln + Ln+3Ln+1)ε

+ 2(LnLn+3 + Ln+2Ln+1)jε] .
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Repeating the similar calculations in previous proof of identity 1. and using
the identity Ln−1Ln+1−L2

n = 5 (−1)
n−1

(see [12]) in the above equation, the
desired result is found as

DHLn+1 ×DHLn−1 −DHL2
n = 5 (−1)

n−1
(j + 3jε).

Thus, the proof is completed.

Theorem 6 (Catalan’s Identity). The Catalan identity for the dual-hyperbolic
Fibonacci numbers is given by

DHF 2
n −DHFn+r × DHFn−r = (−1)

n−r
F 2
r (j + 3jε) .

Proof. Considering the the equations (3) and (4), we get

DHF 2
n − Fn−r × Fn−r
=
[
F 2
n + F 2

n+1 + 2 (Fn+1Fn) j + 2 (Fn+2Fn + Fn+1Fn+3) ε
+ 2 (FnFn+3 + Fn+1Fn+2) jε]

− [Fn+rFn−r + Fn+r+1Fn−r+1 + (Fn+rFn−r+1 + Fn+r+1Fn+r)j
+ (Fn+rFn−r+2 + Fn+r+2Fn−r + Fn+r+1Fn−r+3 + Fn+r+3Fn−r+1)ε
+(Fn+rFn−r+3 + Fn+r+3Fn−r + Fn+r+1Fn−r+2 + Fn+r+2Fn−r+1)jε] .

Putting the identities F 2
n−Fn−r Fn+r = (−1)

n−r
F 2
r and Fm Fn−Fm+kFn−k =

(−1)
n−k

Fm+k−n Fk (see [19]) into the last equation, we obtain

DHF 2
n −DHFn+r × DHFn−r = (−1)

n−r
F 2
r (j + 3jε) .

3 Conclusions

When the literature is reviewed, it can be seen that several studies have
been conducted on quaternions, split quaternions, complex quaternions, dual
quaternions, hyperbolic quaternions, and one can find the results regarding
these quaternions and their properties in [2], [3], [9], [13]. Here, the studies
about these quaternions can be summarized as follows:
A generalized quaternion can be written in the following form

q = a0 + a1 i+ a2 j + a3 k

where the coefficients a0, a1, a2, a3 are real numbers and i, j, k represent the
quaternionic units which satisfy the equalities

i2 = −α , j2 = −β , k2 = −αβ
ij = −ji = k , jk = −kj = βi and ki = −ik = αj

where α, β ∈ R. Special cases can be seen at the following scheme according
to choice of α and β
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α = 1, β = 1 Real quaternion
α = 1, β = −1 Split quaternion
α = 1, β = 0 Semi-quaternion
α = −1, β = 0 Split semi-quaternion
α = 0, β = 0 1

4 -quaternion

Horadam initially described Fibonacci quaternions taking the coefficients of
a quaternion as Fibonacci numbers [10]. Recently, many authors have studied
Fibonacci and Lucas quaternions based on this paper. Moreover, these studies
have been extended to octonions.
Our paper is motivated by this question: What happens if the components of
dual numbers become hyperbolic numbers? This idea led to the concept of
dual-hyperbolic numbers with Fibonacci and Lucas coefficients. This number
system is commutative and five different conjugations can be defined (see page
3). Therefore, we have achieved a result which includes Fibonacci numbers,
hyperbolic Fibonacci numbers, dual Fibonacci numbers and dual-hyperbolic
Fibonacci numbers, which can be seen in Proposition 1. Furthermore, this
idea can be extended to eight-component number system joining the complex,
hyperbolic and dual numbers such as

z = a+ ib+ jc+ µd+ ep+ fq + gu+ hv

where 1, i, j, µ, p, q, u and v are the basis of the eight-component number. The
multiplication scheme becomes [14]

× 1 i j µ p q u v
1 1 i j µ p q u v
i i −1 p q −j −µ v −u
j j p 1 u i v µ q
µ µ q u 0 v 0 0 0
p p −j i v −1 −u 0 0
q −q −µ v 0 −u 0 0 0
u u v µ 0 q 0 0 0
v v −u q 0 −µ 0 0 0

While the field of octonions is non-commutative and non-associative real
field, this new number system becomes both commutative and associative.
The present study is useful for the study of mathematical models which are
the classes of Fibonacci numbers, golden proportions, Binet formulas, Lucas
numbers and golden matrices. Thus, we believe that these results will con-
tribute to the algorithmic measurement theory, new computer arithmetic, new
coding theory and the mathematical harmony.
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Ayşe Zeynep AZAK,
Department of Mathematics and Science Education,
Sakarya University,
54300 Sakarya, Turkey.
Email: apirdal@sakarya.edu.tr

Mehmet Ali GÜNGÖR,
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